数学

(1) 4(x+8)-6x>-1 を満たす 2 桁の自然数 x の個数は r 個である。

$$(2) \quad 0^{\circ} \leq \theta \leq 180^{\circ}, \quad \sin \theta + \cos \theta = \frac{1}{3} \text{ O とき}, \quad \sin \theta - \cos \theta = \frac{\sqrt{\text{ 1ウ}}}{\text{ II}} \text{ である}.$$

(3) 下の表は、あるクラスの生徒 5 人の50m 走のタイムx (秒) と反復横跳びの回数 y (回) を測定した結果である。

生徒	x	у	$x-\bar{x}^*$	$y - \bar{y}^*$	$(x-\bar{x})\ (y-\bar{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
A	7.5	59	-0.3	4	-1.2	0.09	16
В	7.9	52	0.1	- 3	-0.3	0.01	9
С	7.8	56	0	1	0	0	1
D	7.7	58	-0.1	3	-0.3	0.01	9
Е	8.1	50	0.3	— 5	-1.5	0.09	25
合計	39	275			-3.3	0.2	60

x と y のデータの平均をそれぞれ \bar{x} , \bar{y} とする。

- ◎ 強い正の相関がある
- ① 弱い正の相関がある
- ② 強い負の相関がある
- 3 相関がほとんどない
- (4) 白球 2 個, 黒球 3 個, 赤球 4 個が入っている袋から, よくかき混ぜて同時に 3 個の球を取り出すとき, 3 個とも色が異なる確率は カ である。
- (5) 6 進法で表された数2024(6)を 4 進法で表すと **クケコサシ** (4)である。

 \triangle ABC において、AB = 6、AC = 8、 \angle BAC = A とする。辺 BC 上に点 P をとり、P から直線 AB および直線 AC に引いた垂線をそれぞれ PD、PE とし、PD = a、PE = b (a>0, b>0) とする。 \triangle ABC と \triangle PDE の面積をそれぞれ S、S' とすると、S=4S'が満たされているとする。このとき、A の大きさと点 P の位置を求める。

(1)
$$S = \boxed{ \mathcal{T} \mathbf{1} } \sin A \qquad \cdots \cdots \mathbf{1}$$
 $S' = \frac{ab}{\boxed{ } \mathbf{7} } \sin A$

である。

である。

S は \triangle ABP と \triangle ACP の面積の和となるので,S = $\boxed{\textbf{力}}$ a+ $\boxed{\textbf{‡}}$ b と表せる。 このことから,①と②より,

$$\frac{a}{\boxed{2}} + \frac{\boxed{7}}{a} = \sin A \qquad \cdots 3$$

が得られる。

(2) $\sin A \le 1$, a > 0 および③の条件より, $a = \Box$, $A = \boxed{$ サシ) である。 したがって

$$b = \boxed{\lambda}, \quad \frac{BP}{BC} = \frac{\boxed{\tau}}{\boxed{y}}$$

である。

a を定数としたx の 2 次関数f(x), g(x) を以下のように定義する。

$$f(x) = x^{2} - ax - a + 3$$

$$g(x) = x^{2} + (a + 2)x + 2a + 9$$

(1) y = f(x) のグラフの頂点の座標は,

$$(\frac{a}{\boxed{7}}, \frac{\boxed{1}a^2}{\boxed{7}}-a+\boxed{ extbf{ o}})$$

である。

(2) y = f(x) のグラフが、x 軸と異なる 2 つの共有点をもつとき、a の値の範囲は、

$$a < \boxed{$$
 才力 $}$, $\boxed{$ ‡ $\boxed{ } < a$

である。

(3) y = g(x) のグラフが、x 軸とただ1つの共有点をもつとき、共有点の座標は、

である。

(4) y=f(x), y=g(x)のグラフのうち、少なくとも一方のグラフがx軸との共有点をもつとき、a の値の範囲は、

である。

(5) y=f(x)のグラフをx 軸方向に3, y 軸方向に-3 だけ平行移動させると, y=g(x) のグラフに重なった。このとき, a の値は,

である。

4

a = 221, b = 323とする。

- (2) \sqrt{abc} が整数となる正の整数 c の中で、最小のものは **キクケ** である。
- (3) 不定方程式 ax + by = 0 の整数解は、k を整数とすると、

$$x =$$
 コサシ k , $y =$ スセ k

である。

(4) 不定方程式

$$ax + by = 22100$$

を満たす0以上の整数x, y の組は \boxed{y} 組あり、その中で最もx が小さいものは

$$x = \boxed{9}$$
, $y = \boxed{fy}$

である。

(5) 不定方程式

$$ax + by = 22100 + \boxed{71}$$

である。