金融システムの構造と頑健性

一、金融システムとネットワーク

金融システムは、各国において繰り返し危機に直面している。C. P. Kindlebergerは、著書 "Manias, Panics, and Crashes" において、一九七八年から一九九〇年代までの間に四六の大きな金融危機が繰り返されてきたことを明らかにすることを選んだ。《percision》死に絶えない多遠年という言葉を使って、金融危機が繰り返されてきたことを強調した。世界銀行の調査によれば、一九七〇年代の終盤から二〇〇〇年までの一〇年間の間に、九三カ国において、多くの銀行の資本が枯渇すると
金融システムの構造と頑健性

二、金融機関の資産分布

金融システムを構成する金融機関の数や規模は、新たに設立されたり成長したりする一方、経営破たんや合併により減少するといったプロセスの中で形成されていく。日本における一九九一年度から二〇〇三年度までの間の預金保険機構に加盟している金融機関数の変化をみると、少数ながら新設があったものの、一九九九年から一九九四年にかけての動きをみると、一九九九年から一九九四年にかけての動きをみると、一九七九年のＦＤＩＣ加盟の金融機関数は一四、四三四行であったが、その後三、二二六行の新設が行われたものの、合併等により五、六四〇行が消減し、一、五四四行が破たん・清算された結果、一九四四年末には一〇、五四二行に減少した。
三、ネットワークの基本概念と金融システム

規模の小さい多数の金融機関と規模の大きい少数の金融機関が両極的に併存している。そのヒストグラムの形状は、平均値の周りに対称的な散らばりのある正規分布等とは大きく異なり、平均的な金融機関の規模という概念自体が成立しない経済の広いものである（資産分布の計測時点は、前回の金融危機直前。米国では一九七九年後、日本では一九四九年三月末とした。）

そこで、資産規模のヒストグラムの両対数グラフを作成すると、規模の最も大きい領域において、破たん金融機関（資産規模二億円を越える）の下に直線形状がみとめられる。これは、金融機関の資産の分布が幕分布となっていることを強く示すものである。幕分布全体の構造をみたときに、それがスケール・フリーオリエンテーションであることが判明する。幕分布の大きさが金融機関が広範囲に存在すること（図表1および2（2））にも密接に関係している。数式では、スケール・フリーオリエンテーションは、幕分布に影響を及ぼすものである。
金融システムの構造と頑健性

1 ネットワークの基本概念

金融機関の資産規模からみた金融システムの構造がスケール・フリリー・ネットワークになっていることの意味合いを

一般に、ネットワークとは、空間に点在する結節点（以下、ノード、nodes）とそれらを結ぶリンク（以下、リンク、links）を伴う動的な事象も議論の対象となる。金融システム全体をひとつのネットワークとして捉えることができる。そうしたネットワークの構造を表現する最も基本的な指標は、ノード毎のリンクの数（次数）とその分布（次数分布）である。次数という表現に最も近いもののは、リンクを一様、同質なものと想定したときである。しかし、各々のリンクから別のノードに到達するのに必要な最小経由ノード数のすべてのノードに関する平均値、中心性など、いくつかの重要な指標はある。図表3の下部点線で囲んだジャイアント・コンポーネント（Giant component）と呼ばれるネットワークの性質を示す。平均ノード間距離（あるノードから別のノードに到達するのに必要な最小経由ノード数）を示す。必要な指標は、ネットワークの全体性に大きく関わっている。これからの指標、概念はネットワークの性質に大きく関わっている。
インターネット取引は一部でしかなく、金融取引には顧客との間の預金や貸出、振込み、有価証券の売買など、様々な形態がある。そこでひとつの試みとして、金融機関の取引は、「ノードの重み」となる。金融システムは、そのような「重み付けネットワーク」であると考えてみよう。このように想定するポイントは次のとおりである。

（1）預金、貸出取引など、金融機関と顧客の間の取引関係は、あるノードとそれ自身をつなぐ自己リンクの重みとなる。インターネット取引の場合は、他のノードとのリンクであるが、取引残高をリンクの重みとみる点は同じである。

（2）他行への振込みの場合は、取引残高の増加となる取引であり、これも、最終的には金融機関の総資産に反映される。その意味で、振込などの決済取引とも総資産（強さ）に対応反映される。もっとも、総資産残高が変化しない場合でも、フローとしての決済取引が大きいことhom however, the context or the specific issue is not clear from the text. It might be related to financial transactions or networking, considering the references to nodes, links, and weightings. However, the context seems to be an extended discussion or a technical explanation, potentially from a financial report or a technical paper. The text is structured in paragraphs, suggesting a flow of thought or a sequence of points being made.

Overall, the text seems to deal with financial concepts, possibly focusing on the structure and dynamics of financial networks or systems, discussing the importance of weights and linkages in determining overall strength or activity.
四、ネットワーク理論の概念

1. ネットワークの類型

以下、次数や強さの分布を軸にネットワークに関する一般的な理論を整理していく。この見通しをよくするため、まず、

資金の流れに着目すると、預金は金融機関に資金が向かう取引であるのに対し、貸出は金融機関から資金が出ていくことから、方向性を考慮する必要がある。しかし、金利において最終的に金融機関の資産に着目した議論を行うので、方向性のないネットワークに対する考察を基本とする。

ネットワークの種類について概観しておこう。なお、一般にリンクに関しては、方向性的有無を問題とする。たとえば、

ネットワークの中では、プロトタイプ的な位置づけとなるのは、すべてのノードが、同数のリンクで繋がっている格子である。この場合、次数分布は一点分布である。

一方、木の枝状に枝分けされているネットワークである。作り方は成綱の有無、仕方により、線分布を含め様々な次数分布を与えることができる。ただし、サイクル（3つ以上のノードを結ぶループ）が存在しない特徴がある。

ランダム・ネットワークは、(P. Erdos and A. Rényi, 1959) によって初めて本格的にモデル化されたネットワークである。その次数分布は、ノードの数、つまりネットワークのサイズ（N）を増やしていくと、漸近的にポアッソ分布に従うのが特徴である。
金融システムの構造と頑健性

で与えられ、優先的選択の下で成長するネットワークの次数分布は、規模が小さいほど、分布の幅が広く、ネットワークの性質として安定を有する。小高の選択の度合いが強いほど、網が幅広がる。

（上）式の両辺の対数をとると、

\[\log P(k) = \frac{m}{\log k} \]

となるので、両対数グラフ上で、傾きが \(\frac{m}{\log k} \) の直線となる。これにより、規模分布の存在を確認する手掛かりが得られる。実際、このことから先ほど日米のデータで規模分布となることが分かったわけである。なお、日米の金融機関の資産分布において、日本の方が米国よりも、また日本において協同組織が最も多く、かつ、その順序でハブ性が強いということを言うことができるかもしれない。この点については、さらに慎重に検討する必要がある。
1. 金融取引の規模・集積の効用

金融取引は、情報が重要な役割を果たす取引である。情報は金融機関には取引先の業務提携のニーズなどの情報をより多く集まる。また、決済取引については考えられることと、取引先の数を増やす店舗は、それ自体がより大きな顧客利便性をもたらす。このように金融システムには、ハブ性を持つ相関的多数のノードにリンクが集中するという、スケール・フリーやネットワークの基本的な性格があると考えられる。たとえば、取引先の多

2. 金融取引の効率性

金融取引は、その品質が比較的均一な取引であるため、コストやスピードなどの効率性が重要である。この点、スケール・フリーやネットワークの場合はノード間距離が小

ノードの数の対数に比例し、スケール・フリーやネットワークにおいては構造的に凝聚が距離が短いことになる。また、実際には多くの重いリンクを持つハブを通じて各ノードが繋がっていることから、ノードからみるのではなく、リンクの数や
3 故障などに対する抵抗力

自然淘汰、ないしはある種の最適化の結果として分散が現れるという研究がある。最適化に関しては、インターネットの観点で、特にインターネットによるルーター等の障害、森林火災、電力供給網の発電所事故への抵抗力をいかに高めるかといった「設計」の観点の上での観察が重要となる。この点、最近の研究では、ネットワークによる障害も関わらずネットワークの安定性をいかに高めることを考えた場合、ある種の最適化が自ずと現れるのである。後述の構造と攻撃の両方に対して、たとえの数値をもつ均質なノード数と少数のハブの共存が経済的な意味において強いネットワークであると仮定した研究結果もある。

注5 こうした観点から、金融システムがスケール・フリー・ネットワークとなっているのと、また、自発的なネットワーク構造が形成される理由は、ネットワークの自動形成機構に基づいて形成されるからである。
金融システムの構造と頑健性

1. ノード除去に対する頑健性と脆弱性的共存（ショック型のシステムリスク）

ノード除去に対する頑健性と脆弱性的共存は、ノードの種類やネットワークの構造により異なります。ノード除去に対する頑健性は、ネットワークの構造により大きく異なっています。ノード除去に対する頑健性を高めるためには、ノードの選択が重要です。ネットワークの構造により、ノード除去に対する頑健性は大きく異なります。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ネットワークの構造により、ノード除去に対する頑健性は大きく異なります。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構造を考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構струкを考慮することが重要です。ノード除去に対する頑健性を高めるためには、ネットワークの構structureを考察することによるものができる。
コレーション (Correlation) とは、ネットワーク全域への伝播による繋がり、たとえば情報の際限なない広まりのことである。そうしたパーコレーションが生じない確率は、木の形のネットワークを前提にすると注2、次数の平均 (k) の 2 乗よりも (k²) に対する比率に比例することが知られており、パーコレーションが実現する。このことは、見方を変えれば、ほぼ全てのノードの繋がりが維持されるとき、その比率はゼロとなって、パーコレーションが発散するときとは常に満たされる (繋がりの観念すれども、パーコレーションが発散する限り、次の発散の条件は、スケールフリーネットワークの場合、パーコレーションが発散することから容易に確かめられる。実際、日米のデータでは金倉ノードの破たんが見られたが、信用仲介他、全体としての金倉システムの機能は維持される可能性が高い。
金融システムの構造と頑健性

中央銀行の中心性

中央銀行は、金融機関のネットワークの中で最も中心的な存在を果たす。金融危機において、中央銀行は貸出枠の拡大や、政府の金融支援など、金融機関の需給バランスを維持するための役割を果たす。

この点から、中央銀行の役割を理解し、重要な役割を果たす必要がある。

ハブの役割

ハブとしての中央銀行の役割は、金融機関間の情報の交換を促進することである。ハブは、情報伝播の役割を果たし、金融機関間の通信を容易にすることが可能である。

ハブとしての中央銀行の役割は、金融機関間の信頼関係を築くことが必要である。中央銀行の役割は、金融機関間の信頼関係を築くために、情報の適切な伝播を保障することである。

中央銀行がハブとしての役割を果たすためには、情報を適切に伝播するための制度を整備することが必要である。中央銀行が情報の適切な伝播を保障するためには、情報の透明性を高めることが必要である。

また、中央銀行がハブとしての役割を果たすためには、金融機関間の情報の交換を容易にするために、情報の適切な伝播を支援することが必要である。
2 連続的な外的ストレスに対する自己組織化限界（逐次波及型のシステムック・リスク）

上記の1においては、ランダムにノードを除去していくか、ないしは次数の高い順にノードを逐次除去していくという前提で、ネットワークの顕著な選択を含め外部要因で決まるとして、その後の障害や攻撃の対象となるノードの選定（波及）は内生的なプロセスを巡ることが想定される。

解析編で述べているように、一連の前提のもとで、こうした波及プロセス体自体の分布が微弱性を有することが分かっているという。すなわち、スキャル・フリート・ネットワーク上では、何らかのストレスが与えられた、そのノードのリンクは強さは近隣のノードに移動するが、同様に同じノードが関係以下に収まるようになる段階で終結するとして、そのようなプロセスを考えた場合、崩壊する一連のノードの次元数の変数の計算上それによってのみ規定される分布が次第に減少すること、数値計算だけではなく解析的にも一連の前提の下で明らかになった。P. Bak（P. Bak, 1996）などで述べたノード除去がショック型のシステムック・リスクとすれば、今述べたのは不良債権増加型のシステムック・リスクとも言えるかもしれない。また、たとえば不良資産の増加圧力というものが継続的に存在するとすれば、その限りでは、
情報の広がり方の問題（信用不安及び型のシステム・リスク）

3　情報の広がり方の問題（信用不安及び型のシステム・リスク）

先程も触れたように、ネットワーク上の情報の伝わり方については、近年様々な研究がある。特に、格子、スモール・ワールド・モデル、ランダム・ネットワークに関する研究では、各モデルにおける情報の伝わり方については、近接性を前提にする必要性は乏しいかもしれない。しかし、理論的に必要な点もある。

しかし、金融に関する情報については考えた場合、それは取引に付随して生産され、伝達される面があることとも事実である。信用不安の伝播は金融機関取引を通じての情報の流れは、スケール・フリーよりネットワーク上で動いていることになる。そのため、信用不安の規模を含めて情報は、基準部分が大きく広がることを防ぐのは非常に困難であることを意味する。ただ、リンク数は取引の数ないし取引の数と観念すると、情報の伝播、それに伴う取引変更などの伝播が一気に生じ、典型的な信用不安の伝播の状況を示唆している。
ねらに

以上のようにな、金融システムがスカラル・フリ－・ネットワークとしての性質をもつことが分かりると、スカラル・フリ－・ネットワークが一般に有する性質から逆に金融システムの特質を考察する手がかりが得られる。すなわち、金融システムは、①単に規模が大きいだけではなく、②外部からのストレスがあると、ある時点から一連の連鎖が始まる。③信用不安は速いスピードで伝播する可能性がある。という意味でシステムのリスクに脆弱だと考えられるということである。本稿では、ネットワーク理論の金融システム論への適用の可能性を探求した。荒削りではあるが、その可能性をある程度示し得たのではないかと思う。ネットワーク理論はまだ発展途上である。一方、金融取引、金融システムの構造、変貌を続けていく。

これに期待したい。
図表1. 金融機関の資産分布（日本）

データ出所
銀行は、日経NEEDS Financial QUESTと各金融機関のHP。信用金庫、信用組合は金融図書コンサルタント社の全国信用金庫財務諸表、全国信用組合財務諸表。
図表 2．金融機関の資産分布（米国）

(1)全金融機関（1979年末）

(2)全金融機関（1979年末）

(3)上位100行（1979年末）

(4)総資産5億ドル以下の金融機関（14360行のうち14035行）

(5)破綻金融機関

(6)全金融機関（2007年末）

（データ出所）米国 FDIC の HP。
金融システムの構造と頑健性

図表3．ネットワークのイメージ

(1)金融機関取引のイメージとその類型

銀行Aとその顧客との取引
銀行Aの顧客と、
銀行Bの顧客との取引
銀行Bとその顧客との取引

銀行Aと銀行Bの直接取引

(2)ネットワークの一般的な類型

（格子）

（ランダム・ネットワーク）

（スモール・ワールド・ネットワーク）

（スケール・フリー・ネットワーク）

成長と優先的選択の組み合わせ

ネットワークの成長（ノード・リンクの追加）

ハブ

ジャイアント・コンポーネント
(r) \cdots \cdots \cdots \cdot \frac{1}{1 + \frac{\alpha}{\beta}} \cdot \frac{(\alpha + 1)}{n} = A + (\alpha + 1)K

(\alpha) \cdots \cdots \frac{1}{1 + (1')K} \cdot \frac{b}{[n]} = \frac{\alpha e}{[n + (1')K]} e

\frac{1}{1 + (1')K} \cdot \frac{(\alpha + 1)}{n} = \frac{[n]}{[n + (1')K]} \cdot \frac{b}{b}

(\alpha) \cdots \cdots \cdot A + (\alpha + 1)K \cdot \cdot \cdot b
\begin{align*}
(\mathbf{1}) \quad \cdots \cdots \cdots \cdots \quad \frac{b}{b + a + w} K \times \{(x) d
\end{align*}

\begin{align*}
(\sim) \quad \cdots \cdots \quad \frac{b}{b + a + w} + \frac{b}{a + w} = (3) d
\end{align*}

\begin{align*}
(\text{末}) \quad \cdots \cdots \cdots \cdots \quad \frac{b}{a + w} \left((a + K) \cdot \frac{a + w}{b} \right) = u
\end{align*}

\begin{align*}
(=) \quad \cdots \cdots \cdots \cdots \quad \frac{1}{16n(3) d}
\end{align*}
\[\frac{d}{dt} \left(\begin{array}{c} \frac{\nu \lambda}{(\nu + \mu)(b - \mu)} \\ \frac{\nu \lambda}{(\nu + \mu)} \end{array} \right) = \begin{array}{c} \frac{\nu \lambda}{(\nu + \mu)(b - \mu)} \\ \frac{\nu \lambda}{(\nu + \mu)} \end{array} \]
\[
\frac{(1)_S}{(1)_w} = \frac{\Omega}{\Omega_{w}}
\]

\[
(1)_S \cdot \varrho \cdot (1)_w \sum_{\omega=1}^{(g+1)} \left(\frac{(1)_{f}^{(f_s)}}{(1)_w} \right) \omega = \frac{\Omega}{\Omega_{w}}
\]

\[
u_{w}/(1)_w = (1)_w
\]

\[
u_{S}/(1)_w \cdot \tilde{g} = (1)_w
\]
（I）・・・・・・・・・・（Ⅱ）"（w）関係で

（Ⅲ）・・・・・・・・・・（Ⅳ）関係で

（V）・・・・・・・・・・（Ⅵ）関係で

（VII）・・・・・・・・・・（VIII）関係で

\[\alpha = s \left(\frac{Z_0 + 1}{s^u + Z_m} \right) = \left(\frac{u}{1} \right) \frac{Z_0 + 1}{s^u} \]
金融システムの構造と頑健性

重み付きネットワークにおいて、あるノードの強さが大きい場合は、そのノードに隣接するノードの強さも大きい傾向があります。これは、ノードの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できます。この現象は、ネットワークの強さがネットワークの構造に影響するという観点からも理解できます。すなわち、ノードの強さが高いと、そのノードに隣接するノードの強さも大きくなることが期待できる。
讓我們來討論一下（avalarance size）之間的關係。首先，我們看到在不同的情況下，活躍的元素會有不同的表現。這是由於環境因素和個體差異所造成的。例如，在高溫和高壓下，原子的能量會增加，這可能會導致一些反應的發生。在低溫和低壓下，原子的能量會降低，這可能會導致一些反應的停止。這些反應的意義是非常重要的，因為它們可能對我們的日常生活產生影響。
金融システムの構造と脆弱性

same mass of depositors.
なお、広指数の算出に当たっては、そうした規模を除いて実際には、ヒストグラム上1個のデータしか存在しない場合を除いて回帰分析により算出した。より厳密な統計処理の観点からは無条件を用いるべきであるとの指摘が多いが、ここでは、第2次近づきとして簡便な回帰分析を採用した。ただし、その決定係数はいずれも十分に高かった。

4 ノード（geometric）についても、枝（geometric）、ボンド（geometric）、サイト（geometric）、行為者（geometric）という用語が用いられることが多く、特に数学では、グラフ（geometric）が一般的である。また、複雑ネットワーク（complex networks）、という用語も用いられる。ネットワーク（networks）などの用語も用いられる。ネットワーク理論は新しい分野であり、物理などの基礎分野の違いによって異なる用語が用いられている。ノードが用いられることが多いので、ここでは、特にgeometricについても。

5 スケール・フリーネットワーク上での最適化過程を検討した（M. Catzgen, and J. Doyle, 1996）のほか、故障に攻撃にも強いネットワークとして2極分布の有用性を提唱している（谷澤・俊弘, 2000）などを参照された。

コンポーネントの外周部分は、木の形状をしていると予想している。端末に実現しているわけではない。

8 スケール・フリーネットワークは、形状を持たないネットワーク自体が多様で再びスケール・フリーネットワークの多様性が維持されているということになった。実際のネットワークの多くがスケール・フリーネットワーク出ることがと矛盾するからである。

NB-ナサ型の加除の分布も幂分布となる。

